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ABSTRACT 

Sufficient conditions are given for the existence of a-finite invariant measure 
for conservative and ergodic Markov processes. 

1. Definitions and notations. A Markov process is defined to be a quadruple 
(X, Z, re, P) where (X,Z, m) is a measure space with finite positive measure m 
(re(X) = 1) and where P is an operator on Ll(m) satisfying: 

(i) P is a contraction: II e It -< 1 
(ii) P is positive: if 0 < f ~ Ll(m) then f P  > O. 

The operator adjoint to P is defined in Loo(m). It will also be denoted by P but 
will be written to the left of its variable. Thus ( f P ,  g) = ( f ,  Pg) for f e  L~(m), 
g e L ~o(m). 

The operator P on Ll(m) acts on the signed measure 2-< m as follows: 

(1.1) 2P(A) = f Pl.4,Z(dx). 

Equation (1.1) will occasionally be used for a-finite positive measures. 
We shall also define the operator Ia, for A ~ Z, by 

(1.2) 1.4f(x) 

(1.3) M .4( B) 

The process is said to be ergodic if 

(1.4) 

Let us define the operator: 

= l a ( x ) f ( x  ) 

= ,~(B C~.4). 

0 < re(A) < 1 ~ P1.4 ~ 1.4. 

o~ 

(1.5) PA = 1.4 ~ (PIAc)nPI.4. 
n = O  
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It is well known that (A, E, m, Pa) is a Markov process. 
The process (X,Z, re,P) is said to be conservative if P`11`1 = 1,t for all A with 

re(A) > O. 
It can be shown (see for example [1]) that if the process is ergodic and con- 

servative then for every non-zero function 0 < f e Loo(m). 

oo 

(1.6) ~, P"f(x)  = oo a.e. 
n = l  

A positive measure # is called invariant (under P) if (1.7) #P = p. 
Throughout this paper, (X, Z, m, P) is assumed to be an ergodic and conservative 

Markov process. 

2. On existence of  a a-finite invariant measure. 

THEOREM 1. The condition (2.1) is sufficient for the existence of a a-finite 
invariant measure #, equivalent to m, such that #(A) = 1 for some set A E Z. 

N 

]~ toP'(B) 

(2.1) I f  re(B) > 0 then lira sup "= a > 0. 
N ~ o o  N 

mP"(A) 
n = l  

THEOREM 2. Let us denote 

N 

Z P"ls(x) 
(2.2) tPu(X, A,  B) - ,= x 

N 

Z P"l`1(x) 
n = l  

The condition (2.3) is sufficient for  the existence of  a a-finite invariant measure 
#, equivalent to m such that #(A) = 1. 

1 M 

(2.3) lim s u p ~  ~, ~N(x,A,B) > 0 
M'-+ oo N = I 

for all x e E where re(E) > 0 (E depends on B). 

R E M A R K .  

(re(B) > O) 

If  there exists such a measure, then by the Chacon-Ornstein Theorem: 

N 

E P"la(x) 
lim "= 1 

N-*co N 

E P"l.(x) 
n = l  

= #(B)  a.e. 

Hence, the condition of Theorem 2 is also necessary. 
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[.,EMMA 1. Let ~ be a finite measure invariant under Pa, then 

co 

# = 2Ia Z (PIa)" 
. = 0  

is a-finite measure on x, invariant under P, and B c A ~ ,u(B) = 2(B). 

Proof. This is Lemma 1 of [3]. 

LEMMA 2. For each integer N, and 0 < f eLoo(m): 

(2.4) 
N N 

Z P"Paf(x) <= X P"I,4f(x)+ llfl[ . 
.----1 . = 1  

Proof. Let N be fixed, for each integer K and 0 < f  e Loo(m): 

N K N K 

0 < E P"Ia ~, (PIAc)kpI.4f(x) = ~, P" ( I -  1,4c ) ~ (PIAc)kpIaf(x) 
n = l  k = O  . = 1  k = O  

N K N K + I  

= ~, p. ~ (Plac)kpiaf(x) _ ~, p~-I ~ (Plac)kPiaf(x) 
n = l  k = 0  . = 1  k = l  

= pi,tc)kpAaf(x) _ ~, p.-1 ~, (PiAc)kPlaf(x) 
n k =  n = l  k = O  

+ ~, pn-1 (PiAc)k -- ~_, (Pi4e)k p la f (x  ) 
. = 1  •O k = l  

k K 

= pS E (PIac)kPIAf(x) -- ~, (Plac)kpIaf(x) 
k = 0  k = 0  

N N 

+ P " I A f ( x )  - T M  el j (x)  
. = 1  . = 1  

N K N 

6 E P"Iaf(x) + pN E (PIac)~elaf(x) ~ E Pnlaf(x) + llfll . 
n = l  k = O  n = l  

But this inquality is true for every K, let K ~ oo and then we get ~ff= 1P"Paf(x) 

<-- ~,~.=1P'Iaf(x) + Ilfll~. 
Let us define a functional v on Loo(A, Z, mla) as follows: Let (Ni} be a sequence 

of  integers: 

N~ 

~, (mP", f )  
(2.5) v(f) = Lira .= 1 (a Banach limit). 

j Nj 
Z mP"(a) 

n = l  

Let us also define an operator T from Loo(A, Y., mla) into Loo(X, Z, m)as follows: 
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(2.6) Tf(x) = Lira 
N 

it is clear that [Iv [[ = 1 and [I T [I = 1. 

L~MMA 3. 

(2.7) 

(2.8) 

P r o o f .  

N 

E P"f(x) 
n = l  

N 

E m l x )  
n = l  

For each f ~ Loo(A,X, m) we have: 

T f (x )  = TPaf(x  ) 

v(f) = v(eaf) .  

According to (2.3) and (2.6) and by the fact that ]~,~t Pnla(x)= oo 
a.e. we have for each 0 < f <  1a: Tf (x )> TPaf(x  ) a.e. but T1 a -  TPaf  
= T P a ( l a - f ) <  T1 a -  T f ~  T f <  TPAf. Hence Tf(x) = Tea f ( x  ) a.e. and (2.7) 
is proved. The proof of (2.8) is similar. 

LEMMA 4. I f  there is no a-finite invariant measure p equivalent to m such 
that p(A) = 1 then there is a non-zero function 0 <_ g <= la and a sequence of 
intergers {ni} so that 

oo 
(2.9) ?5 P~'g < 1a. 

i = 1  

Proof. Lemma 3 of [6] says: Let (X, E, m, P) be a Markov process and there is 
no finite measure invariant under P then there is a non-zero function 0 =< g < 1 
and a sequence of integers {nl} so that ~j oo ,, =IP  g <  1. 

Now, if there is no a-finite invariant measure # such that p(A)= 1, then we can 
conclude from Lemma 1 that there is no finite measure, supported on A and 
invariant under P.4. Hence, there is a function 0 < g < 1 a and a sequence of 
integers {ni} so that ~-,i~1P~g < la. 

P r o o f  of Theorem 1. Let us assume that there is no a-finite invariant measure 
# equivalent to m such that #(A) = 1. Let g be the function of Lemma 4. 

By (2.1), there can be found a sequence of integers {Nj} so that: 

N j  

Z (mP",g) 
lira ~ = ~ > O. 
j - *  0o Nj  

Z men(A) 
n = l  

Let us put this sequence in (2.5), and then v(g) > 0. But, by (2.8), and (2.9) we have, 
for every integer N: 
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1 = v(la) > v P = Nv(g), 
i 

A contradiction. So, Theorem 1 is proved. 

Proof  of Theorem 2. Let B = {x[g(x)> 8} where g is the function of  
Lemma 4, B c A, and we can find a e > 0 so that m(B) > 0, hence ~ =  1 P"a'l B < 1/~la. 

N nt By (2.7) and (2.9) we have for every integer N: (1/8)la=(1/OTla> ~i=ITPxlu 
= N" T1B. Hence, T1B = 0, or Lim ~bN(x, A • B) = 0 for all Banach limits, where 
~kN(x, A, B) is defined in (2.2). That means, the sequence g,N(x,A, B) almost con- 

1 M 
verges to zero, and by Theorem 1 of  [5] : ~ -  ~ ~ks (x, A, B) ~ 0 a.e. A contra- 

N = I  M-~oo 

diction to (2.3). So Theorem 2 is proved. 

REMARK. Without the assumption that the process is ergodic, the conditions of  
Theorem I are sufficient to show the existence of  a a-finite invariant measure/~, 
with/~(A) = I, supported on X and equivalent to mLT, where 

= E > o . 
n = l  

THEOREM 3. (a) Let B be a set with re(B) > 0 and 

1 
~kN(x, A, B) ,= 0 a.e. lira 

M-~O N = I  

~o B then X =  Ujf f i ,  j s o t h a t  

1 U 
(2.10) lim ~ ~ CN(x,A, By) = 0 a.e. for allj. 

M ~ O  N = I  

(b) Let B be a set with ra(B) > 0  and 

N 

E me"(B) 
lira .= l  = 0  

N-"* oo N 

E mP"(A) 
. = 1  

then X =, UT=t Bj so that 

N 

~, mP"(B.l) 
(2.11) lim "=~ = 0 for allj. 

N'~oo N 

Z mP"(A) 
. = 1  

P r o o f i  Let us define: 
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(2.12) Bki = x lPqB(x )  >= T "  

It is clear that Uk.~B~, = X, and i • P*IB > 1~,.  Hence: 

N N 

E ml~n(B~i) i" E m1~+~(B) 
lira "= 1 < lira , = 1 

N~oo N N ~  N 

E mP"(A) E mP"(A) 
n = l  n = l  

= 0  

343 

and (2.11) is proved. The proof of (2.10) is similar: According to the assumption 
of the theorem, for every x s X, except of a null set, we have: (i) ~ ,  = 1P"la(x) = oo. 

(ii) It can be found a sequence of integers of density 1 {N j} such that 

limj_~ oo~'Nj (X, A,B) = 0, but : 

Nj 
i. E P~+qgx) 

lira ONS(X,A, Bik) < lira "=~ = O. 
J~oo  j ~ o o  Nj  

E P"la(x) 
n = l  

M 

Hence, lira 1. ~ d/N(X,A,B~k) = 0, and (2.10) is proved. 
M--*oo M N = I  

COROLLARY. Each one of the following conditions, (a) and (b), is sufficient 
for the existence of a a-finite invariant measure # such that #(A) = 1. 

(a) There can be found a positive number ~, so that for every set B with 

N 

E mP"(B) 
re(B) > 1 - e we have lirn sup ~ = t > O. 

bl ~ oo N 

Y~ mP"(A) 
n = l  

(b) There can be found a positive number e, so that for every set B with 
1 u 

re(B)> 1 - ~  wehave l imsup -~  ~ ~kN(x,A,B)>O for all x eE ,  m(E)>O 
M..* oo b i l l  

(E depends on B). 

Proof. By Theorem 2, we can conclude that conditions (a) and (b) of the 
Corollary imply (2.1) and (2.2) respectively. 

TrlEOe.EM 4. Let us assume that the a-field Z has an atom A, then there 
exists a a-finite invariant measure p, equivalent to m, such that p(A) = 1. 

Proof. Let m(A) = e > 0, then for all B ~ E, re(B) > 1 - ~ ~ A = B. 
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N 

E mP"(B) 
Hence: "= 1 

N 

Z mP~(A) 
n = l  

>1 

and by the Corollary of Theorem 2, there is a a-finite invariant measure/~ such 
that p(A) = 1. 

REMARK. If  X is countable then each x E X is an atom, hence there is a a-finite 
invariant measure g, such that g{x} = 1. 

Let pn = Qn + R,  where Q, is an integral operator with the kernel ~n(x, y), 
and if K is any integral operator so that 0 < K < R, then K = 0. 

DEFINITION. ( X , B , m , P )  is said to be a Harris process i f  Q , > 0  for  some 
integer n. 

The following theorem was proved by Harris [3] (see also [2] and [4]). We 
shall get it as a consequence of the Corollary of Theorem 2. 

THEOREM 5. I f  P is a Harris process then there exists a a-finite invariant 
measure equivalent to m. 

Proof. Let P be a Harris process where there is an integer k so that Qk > 0, let 
09R(X, y) be the integral kernel of Qk" Hence, there are two positive numbers e, 6, 
so that if  we shall define 

Ex = {y] o~k(x, y) > e} 

then it can be found a set A with re(A) > 0, so that m(Ex) > 6 for each x ~ A. 
Let B be a set with re(B) > 1 - 6/2 then x e A => m(B (h Ex) > 6/2, and therefore 

x ~ A =:. pklB(x ) fB,~x COk(X, y)m(dy) > em(B Ch Ex) > (etS/2) and hence eqs(x) 
> (etS/2)la(x), and we get 

1 M 
lira sup ~ ~ ~bN(x,B,A ) >= l iminf 

M---~ Qo N = I  N~oo 

N 

Z P"+qB(x) 
n = l  

N 

E e%(x)  
n----I 

N 

P"la(x) 53 
_>- l iminf86 '~ .= t  > ~ - > 0  

N-*oo - N 

Z Pqa(x)  
n = l  

and by the Corollary of Theorem 3, there is a a-finite invariant measure, and the 

theorem is proved. 
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